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Abstract

Recent breakthroughs in text-to-image models have opened
up promising research avenues in personalized image genera-
tion, enabling users to create diverse images of a specific sub-
ject using natural language prompts. However, existing meth-
ods often suffer from performance degradation when given
only a single reference image. They tend to overfit the in-
put, producing highly similar outputs regardless of the text
prompt. This paper addresses the challenge of one-shot per-
sonalization by mitigating overfitting, enabling the creation
of controllable images through text prompts. Specifically, we
propose a selective fine-tuning strategy that focuses on the
text encoder. Furthermore, we introduce three key techniques
to enhance personalization performance: (1) augmentation to-
kens to encourage feature disentanglement and alleviate over-
fitting, (2) a knowledge-preservation loss to reduce language
drift and promote generalizability across diverse prompts, and
(3) SNR-weighted sampling for efficient training. Extensive
experiments demonstrate that our approach efficiently gen-
erates high-quality, diverse images using only a single refer-
ence image while significantly reducing memory and storage
requirements.

Project page — https://textboost.github.io

Introduction
Recent breakthroughs in large-scale text-to-image models
(Nichol et al. 2023; Podell et al. 2024; Ramesh et al. 2022;
Rombach et al. 2022; Saharia et al. 2022; Sauer et al. 2024)
have opened up the new era of image generation, enabling
the creation of diverse and imaginative visuals with natu-
ral language prompts. Building on this success, a burgeon-
ing area of research focuses on personalization (Ruiz et al.
2023; Gal et al. 2023), which allows users to customize these
models to generate images featuring specific concepts.

However, existing personalization approaches (Gal et al.
2023; Gu et al. 2023; He et al. 2023; Kumari et al. 2023;
Ruiz et al. 2023; Wang et al. 2023) still require at least 3 to
5 reference images to produce high-quality outputs. When
only a single reference image is provided, these methods
often struggle to reflect the user’s text prompt effectively,
reproducing almost identical images regardless of the text
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input (see Figure 4). This limitation undermines their prac-
ticality in real-world scenarios where users frequently want
to customize images using just one reference photo. For ex-
ample, users may wish to modify a cherished photograph –
such as a picture of a grandmother, a childhood memory, or
a unique drawing – by applying creative text prompts to both
preserve and enrich their memories.

In this paper, we aim to achieve high-quality personal-
ization using only a single reference image. We propose
a novel approach focusing exclusively on fine-tuning the
text encoder, different from existing approaches that directly
fine-tune the image module (Ruiz et al. 2023; Kumari et al.
2023; Chen et al. 2024a; Zhang et al. 2024c). Our idea is
motivated by the observation that the text encoder’ weights
exhibit the most significant changes during fine-tuning (see
Figure 1). Furthermore, we introduce three innovative tech-
niques tailored for image customization: (1) introduction
of augmentation token to reduce overfitting and promote
disentanglement of subject-relevant and irrelevant features,
(2) knowledge preservation loss to prevent text encoder
from language drift, thus preserving its general capability
across diverse text prompts, and (3) SNR-weighted timestep
sampling to further facilitate efficient training. Since our
method significantly enhances one-shot personalization per-
formance through the exclusive fine-tuning of the text en-
coder, we name our approach TextBoost. Practical exper-
iments demonstrate that our approach effectively achieves
high-quality personalization and creative control through
text prompts, utilizing solely a single reference image across
diverse real-world applications.

To summarize, our contributions are as follows:

• To the best of our knowledge, we are the first to ex-
clusively fine-tune the text encoder for one-shot text-to-
image personalization.

• We propose three novel techniques – paired data augmen-
tation, knowledge-preservation loss, and SNR-weighted
sampling – to enhance personalization capability.

• We demonstrate our method’s effectiveness in generating
high-quality, diverse outputs across various prompts and
datasets, using only a single reference image as input.

• Our approach is memory and storage-efficient, requiring
only 0.7M parameters and 5.1MB of storage, making it
applicable to a broader range of real-world applications.

https://textboost.github.io


Background
Text-to-Image Diffusion Models
Diffusion models (Sohl-Dickstein et al. 2015) have recently
become the most widely adopted generative models for text-
to-image generation (Saharia et al. 2022; Ramesh et al.
2022; Rombach et al. 2022). These models aim to closely
approximate the original data distribution q(x0) with pθ(x0).
Here, pθ(x0) :=

∫
pθ(x0:T ), where pθ(x0:T ) is termed as the

reverse process being Markov chain with learned Gaussian
transitions. The approximate posterior q(x1:T |x0) termed a
forward process, of which the noise is gradually added to the
original data point x0 as xt =

√
αtx0 +

√
1− αtϵ, can be

expressed as q(x1:T |x0) :=
∏T

t=1 q(xt|xt−1). The training
objective is formulated with variational bound on negative
log-likelihood:

E[−log pθ(x0)] ≤ Eq[−log
pθ(x0:T )

q(x1:T |x0)
] := L, (1)

which is further simplified into the following objective:

Lsimple(θ) := Et,x0,ϵ[||ϵ− ϵθ(xt, t)||22]. (2)

Text-to-image (T2I) diffusion models (Rombach et al.
2022) take text condition c as additional input, where the
text prompt y is encoded with text encoder ET as c = ET (y).
These models usually work in latent space by using encoder
EI to encode image x to latent z = EI(x). The training ob-
jective hence takes an additional c and minimizes the fol-
lowing loss:

Ez,t,y,ϵ[||ϵ− ϵθ(zt, t, c)||22. (3)

Although the same concept can be applied to various text-
to-image diffusion models, this paper utilizes Stable Diffu-
sion (Rombach et al. 2022) primarily due to its public ac-
cessibility. Note that the U-Net (Ronneberger, Fischer, and
Brox 2015) architecture is commonly employed for the dif-
fusion module, with the text condition incorporated through
the cross-attention layers.

Personalized Text-to-Image Generation
Personalization aims to create images that align with user-
provided text descriptions, using a small set of reference
images supplied by the user (Zhang et al. 2024b). The
most well-known methods are Textual Inversion (Gal et al.
2023) and DreamBooth (Ruiz et al. 2023). In both works, a
unique identifier V∗ is used to represent the subject to cus-
tomize and optimize the reconstruction objective (Eq. 3).
However, what to fine-tune is different. Textual Inversion
optimizes the text embedding of V∗ to represent the sub-
ject in the latent space, while DreamBooth fine-tunes the
diffusion model’s weights using reconstruction loss and
class-specific prior-preservation loss. These two approaches
each have their advantages and disadvantages. Textual In-
version is lightweight, as it only optimizes the text em-
beddings; however, the generated outputs often suffer from
low subject fidelity. On the other hand, DreamBooth pro-
duces high-quality images by fine-tuning the entire image
generation module but requires significant storage space to

save the U-Net parameters for each subject of interest. Vari-
ous studies have been conducted related to these two meth-
ods. XTI (Voynov et al. 2023) introduces an extended tex-
tual conditioning space, and NeTI (Alaluf et al. 2023) fur-
ther extends this by incorporating timesteps. Custom Diffu-
sion (Kumari et al. 2023) has gained significant attention as
it fine-tunes only the key and value projection matrices in
the U-Net’s cross-attention layers, thereby requiring much
fewer parameters to fine-tune while still achieving high-
quality generation. Therefore, in later sections, we compare
our approach with Custom Diffusion. Additionally, SVD-
iff (Han et al. 2023) fine-tunes the singular values of model
weights, and Perfusion (Tewel et al. 2023) introduces a key-
locking strategy along with rank-1 editing. StyleDrop (Sohn
et al. 2023) focuses on style generation using adapters with
iterative feedback. Other works (Liu et al. 2023; Chen et al.
2024a; Zhang et al. 2024a,c) address the challenges of com-
positional generation. Recently, another line of approaches
has explored learning-based strategies, where additional net-
works are pre-trained for fast inference (Chen et al. 2024b;
Hua et al. 2023; Li, Li, and Hoi 2023; Wei et al. 2023; Xiao
et al. 2023; Sauer et al. 2024; Shi et al. 2024). However,
these techniques often require a massive amount of data and
extensive pre-training of the encoder. In this work, we take
an optimization-based approach, focusing on fine-tuning the
text encoder with simple yet novel techniques to enhance
performance for one-shot personalization.

Need for Fine-tuning Text Encoder

Limitation of Existing Methods

Existing approaches typically require at least 3 to 5 images
to produce high-quality output. However, our work aims to
achieve high-quality personalization using only a single ref-
erence image. Notably, Ruiz et al. (2023) has reported a
rapid decline in quality when fewer than 3 images are pro-
vided. Similarly, Gal et al. (2023) also demonstrates that per-
sonalization requires 3 to 5 samples. This is because training
a U-Net on a single data point is akin to fitting a diffusion
model to a single data point, inevitably leading to overfit-
ting. As a result, the customized model forgets prior distri-
bution, fails to effectively interpret the user’s text prompt,
and consistently generates images that closely resemble the
reference image with little variation.

Instead of direct fine-tuning, recent studies, such as Cus-
tom Diffusion (Kumari et al. 2023), have explored fine-
tuning specific portions of the U-Net. However, even partial
fine-tuning leads to overfitting due to the inherent difficulty
of the task, especially when only a single reference image is
available (see Figure 4).

Another approach to address overfitting incorporates reg-
ularization dataset during training (Ruiz et al. 2023). How-
ever, this method requires generating or retrieving samples
of 100 to 200, which is computationally intensive. Addition-
ally, this regularization effectively doubles the batch size,
significantly increasing GPU memory requirements.



Figure 1: Change in weights of different layers during
fine-tuning. The mean weight change of text encoder lay-
ers is relatively greater than that of U-Net parameters.

Personalizing the Text Encoder
In the previous section, we discussed that direct fine-tuning
of the image module (i.e., U-Net parameters) leads to over-
fitting. Then, what module should we fine-tune to both miti-
gate overfitting and achieve high-quality personalization at
the same time? We begin by assuming that a foundation
model (e.g., Stable Diffusion) already encompasses the dis-
tribution of the samples we aim to generate, as these mod-
els are trained to cover a diverse range of image distribu-
tions. Therefore, identifying the proper conditioning input
to the foundation model should produce personalized sam-
ples, since personalization requires the model to capture the
unique characteristics of the subject by associating a unique
identifier, V∗, with the text prompt. Unfortunately, crafting
a precise prompt to describe a specific image is challenging.
Textual Inversion attempted to find a single token embed-
ding to represent this, but it is time-consuming and lacks
expressiveness.

Given this, we must reconsider which part of the text-to-
image model should be fine-tuned. Kumari et al. (2023) have
justified their focus on U-Net fine-tuning based on their ob-
servations that the parameters of the cross-attention layers
within the U-Net change the most during fine-tuning (Li
et al. 2020). However, their analysis is limited to the U-Net,
without considering potential changes in the text encoder’s
weights. In response, we expand the investigation to include
the text encoder layers, re-examining the fine-tuning pro-
cess. Precisely, we measure the change in parameters for
each module using the following equation: ∆ = ||θ̂−θ||

||θ|| ,

where θ and θ̂ represent the original and fine-tuned weights,
respectively, with the reconstruction loss (Eq. 3). Consis-
tent with Custom Diffusion’s findings, we observe that the
cross-attention layer parameters of the U-Net exhibit rela-
tively larger changes compared to other layers.

More interestingly, as illustrated in Figure 1, the text
encoder’s weights undergo the most significant changes,
even surpassing those observed in the U-Net. This finding
strongly suggests that fine-tuning the text encoder is crucial,
as its parameters play a pivotal role in personalized model

Figure 2: Method overview. We selectively fine-tune text
encoder for one-shot personalization. We utilze three novel
techniques to further boost the personalization performance.

adaptation. To the best of our knowledge, our work is the
first to focus exclusively on fine-tuning the text encoder for
customized text-to-image generation.

Furthermore, to enhance parameter efficiency, we adopt
the Low-Rank Adaptation (LoRA) technique (Hu et al.
2022), appending the adapter to the attention and fully-
connected layers of the text encoder. This approach offers
significant advantages as it requires much fewer parameters
than existing methods. Specifically, our method reduces the
number of trainable parameters and the storage space needed
for each customized model, making it more practical. Our
approach significantly reduces the number of parameters to
0.7 M, which is substantially lower than DreamBooth (865.9
M) and Custom Diffusion (19.2 M).

Method
In this section, we propose three novel techniques to fine-
tune the text encoder for one-shot personalization. First, we
use paired data augmentation by introducing an augmen-
tation token to encourage the disentanglement of subject-
relevant and subject-irrelevant features. Second, we intro-
duce a knowledge-preservation loss to mitigate language
drift and maintain the generalization capability of the text
encoder across diverse prompts. Lastly, we implement SNR-
weighted sampling to enhance training efficiency.

Augmentation Token
Fine-tuning the text encoder alleviates direct memorization
of the input at a pixel level. However, to disentangle the
subject from its background and induce the text encoder to
learn subject-relevant features, we incorporate appropriate
data augmentation techniques to further enhance generaliza-
tion capability.

The most naive approach is to apply data augmentation to
the image itself. During training, a data-augmented input im-
age is fed with the text prompt, ‘A photo of V∗’ Despite be-
ing simple, we find that the resulting images suffer from dis-
torted output due to augmentation leaking, which is known
to be a common problem when training generative models
with data augmentation (Karras et al. 2020). We speculate



that this is due to the binding of augmentation into the sub-
ject token. For example, when vertical-flip augmentation is
applied during training, the model is likely to learn to map
both the subject and vertically flipped subject into the sub-
ject token V∗. Examples of generated images are available
in Appendix A.1.

To this end, we craft precise text prompts describing the
desired augmentations. This approach is also partially em-
ployed in Kumari et al. (2023), where they involve ‘resize’
augmentation: appending phrases like ‘zoomed in’ or ‘close
up’ for 1.2-1.4× scaling and ‘far away’ or ‘very small’ for
0.4-0.6× scaling. This approach has a noticeable effect in
successfully mitigating augmentation leaking. However, the
augmentation prompt needs to be manually selected with
care for each augmentation, and has to be ensured that the
vocabularies in the selected phrase do not interfere with the
model’s original embedding.

To allow for more versatility, we suggest a novel method,
which is to automatically map the applied transformation to
the augmentation token A∗. For instance, a sample image
of a dog rotated by 90 degrees would be accompanied by
the prompt ‘A∗ photo of V∗’. Through this approach, we
learn to associate A∗ for corresponding type of image trans-
formation applied to the input, inducing the model to dis-
entangle V∗ from subject-irrelevant information. Therefore,
during training, we jointly optimize V∗ and A∗, while using
token V* for customized generation at inference time. We
interpret this effect as being similar to that of DistAug (Jun
et al. 2020). Please refer to Appendix A.2 for further details
on the implementation and analysis.

Knowledge Preservation Loss
Fine-tuning a pre-trained model for a specific task is known
to cause a problem called language drift (Lee, Cho, and
Kiela 2019), a phenomenon where the fine-tuned model
gradually loses the syntactic and semantic properties of the
language. To mitigate this issue, DreamBooth (Ruiz et al.
2023) introduces a class-specific prior preservation loss by
adding a reconstruction loss term on the predicted noise
from diffusion models, using 100 to 200 images generated
from a pre-trained model.

The significant difference in our work is that we fine-
tune the text encoder. Accordingly, we devise a novel knowl-
edge preservation loss to ensure that the online text encoder
retains its prior knowledge. We achieve this by using the
cosine similarity between the text embeddings of the pre-
trained and fine-tuned text encoders, similar to studies that
used feature distance to mitigate language drift (Rolnick
et al. 2019; Kang et al. 2023).

Given a set of text prompts Γ = {γ1, γ2, ..., γn} and text
embeddings from the pre-trained text encoder ET (γi) and
the online text encoder ÊT (γi),

Lkp = sim(ET (γi), ÊT (γi)) =
ET (γi) · ÊT (γi)
|ET (γi)| |ÊT (γi)|

(4)

where Γ can be any set of text prompts. For our experiments,
we used captions from InstructPix2Pix (Brooks, Holynski,
and Efros 2023), as it is human-written text.

Our knowledge preservation loss offers two practical ad-
vantages. First, it eliminates the need to generate prior im-
ages during fine-tuning, reducing overall training time com-
pared to class prior preservation loss. Second, it avoids the
requirement for additional GPU memory to store batches of
class-prior images, allowing for more efficient memory uti-
lization during training.

SNR-Weighted Timestep Sampling
To further enhance training, we propose a timestep sampling
method based on the signal-to-noise ratio (SNR) of noisy
input xt. During the fine-tuning of text-to-image diffusion
models, the model predicts the added noise for a given noisy
image xt, where the timestep t is traditionally sampled from
a uniform distribution (Ho, Jain, and Abbeel 2020). How-
ever, we hypothesize that the impact of the text embedding
on the model’s prediction varies depending on the specific
timestep and conducted a small experiment to test this hy-
pothesis. As expected, given two distinct text prompts (e.g.,
‘A photo of a dog’ and ‘A photo of a cat’), the network
predictions (ϵt) are noticeably different at high noise lev-
els, where the model is primarily constructing the content of
the image (Choi et al. 2022). Conversely, at low noise levels,
where only minimal noise is added to the input xt, the model
primarily focuses on denoising the remaining noise, result-
ing in the text prompt having a reduced impact. To sum-
marize, we find out that the impact of text prompts on the
network output is proportional to the input’s noise level.

Based on this observation, during the fine-tuning of the
text encoder, we sample the timestep from the categorical
distribution, with normalized probability p ∝ − log(SNR),
where SNR(t) = α2

t /σ
2
t for any t ∈ [0, 1] with distribution

of noisy input being q(xt|x) = N (αtx, σ2
t I) (Kingma et al.

2021).
We find that this timestep sampling strategy noticeably

enhances the output image quality. More details of this sec-
tion can be found in Appendix B.

Overall Training
To sum up, we train our text encoder with the following ob-
jective:

L = Ez,t,y,ϵ[||ϵ− ϵθ(zt, t, ÊT (y))||22] + λLkp. (5)

Here, text prompt y is sampled from a pre-defined set such as
‘A∗ photo of V∗ with background’, and γi is a text sequence
from regularization dataset Γ. It is important to note that the
subject token V∗ and augmentation token A∗ are jointly op-
timized together in order to minimize the objective above.
Following relevant studies that use LoRA for text-to-image
model fine-tuning (Fan et al. 2023; Black et al. 2024; Chen
et al. 2024a), we use rank 4, and set λ to 0.1.

Experiments
Experimental Setup
Dataset and evaluation metrics. We employed the
benchmark introduced by Ruiz et al. (2023), which com-
prises 30 subjects and 25 text prompts, with each subject



CLIP-T ↑ CLIP-I ↑ CLIP-I ↑ # Params ↓ GPU M ↓ Storage ↓
Methods (seen) (unseen) (batch size=8) (per concept)

BLIP Diffusion 0.608 0.787 0.743 - - -

Textual Inversion 0.460 0.726 0.678 0.0 M 21.6 GB 3.2 KB
DreamBooth 0.572 0.827 0.764 865.9 M 48.9 GB 3.3 GB
DreamBooth-LoRA 0.573 0.771 0.721 0.8 M 33.7 GB 3.3 MB
Custom Diffusion 0.538 0.866 0.795 19.2 M 34.4 GB 74 MB

TextBoost (ours) 0.628 0.767 0.728 0.7 M 22.6 GB 5.1 MB

Table 1: Quantitative comparison on Stable Diffusion v1.5. We measure CLIP-T
scores for image-text fidelity. CLIP-I scores are evaluated with the reference im-
ages that are used for training (seen) and remaining reference images (unseen). For
practicality, we compare the number of parameters, required memory for training,
and storage to save customized model.

Methods Image & Text Fidelity

Textual Inversion 2.8 %
DreamBooth 23.95 %
Custom Diffusion 20.6 %

TextBoost (ours) 52.65 %

Table 2: User study. To assess real-
world user preferences, we ask 100
participants to choose the image that
best resembles the given subject and
matches the provided text prompt.
Each participant answers 20 questions
through Amazon Mechanical Turk,
resulting in a total of 2,000 responses.

Figure 3: Qualitative comparison on Stable Diffusion v1.5. We compare images generated by each method using various
types of text prompts on different subjects. All models are trained using a single reference image.

CLIP-T ↑ CLIP-I ↑ CLIP-I ↑ # Params ↓ GPU M ↓ Storage ↓
Methods (seen) (unseen) (batch size=2) (per concept)

DreamBooth 0.656 0.777 0.732 865.9 M 35.7 GB 3.3 GB
Custom Diffusion 0.609 0.845 0.780 19.2 M 23.7 GB 98 MB

TextBoost (ours) 0.675 0.783 0.739 1.7 M 17.4 GB 6.6 MB

Table 3: Quantitative comparison on Stable Diffusion
v2.1. We evaluate our method on different version of Sta-
ble Diffusion.

having 4 to 6 associated images. To test applicability in di-
verse datasets, we also incorporate reference images from
Custom Diffusion (Kumari et al. 2023) for qualitative re-
sults. We trained all of the models using a single reference
image. Following the DreamBooth, we generated 4 images
per prompt (3,000 images in total) for evaluation.

We assessed subject fidelity by reporting the similarity
between the generated image and reference image(s) in the
CLIP image embedding space (CLIP-I). Our evaluation in-
cludes results for both ‘seen’ images (a reference image used
for training) and ‘unseen’ images (subject images not used
as training data). To assess text-image alignment, we cal-

culated the similarity between each generated image and
its corresponding prompt (CLIP-T). Since the CLIP-I score
does not evaluate the extent of overfitting, memorization of
reference images can result in inflated scores. Considering
this, we assess the inter-similarity between generated images
using the DINOv2 (Oquab et al. 2024) score. Additionally,
to assess the practical applicability of our method, we con-
ducted a large-scale user study involving 100 participants on
Amazon Mechanical Turk to evaluate user preferences.

Baselines. We compare our approach with three widely-
used personalization models: DreamBooth (Ruiz et al.
2023), Textual Inversion (Gal et al. 2023), and Custom Dif-
fusion (Kumari et al. 2023). For reference, we also report
the result from the zero-shot personalization method (Li, Li,
and Hoi 2023), which requires two-stage pre-training be-
forehand.

Implementation details. We utilize the Stable Diffusion
v1.51 text-to-image model, integrating the text encoder from
the CLIP ViT-L/14 model (Radford et al. 2021). All of our

1https://github.com/runwayml/stable-diffusion

https://github.com/runwayml/stable-diffusion


Figure 4: Diversity comparison. (a) We calculate the inter-similarity of 100 generated images using the DINOv2 score and
plot the distribution, given the same reference image and identical prompts. Blue and red horizontal lines indicate the median
and mean of each distribution, respectively. (b) Qualitative examples of each method, with two subjects, each with two images
per prompt. Note that for a fair comparison, the random seeds are fixed.

experiments were conducted in a one-shot setting. Our text
encoder is trained using the AdamW optimizer (Loshchilov
and Hutter 2019) with a learning rate of 5e-3 for text encoder
and 1e-2 for V∗ token for 250 steps. We also employed a lin-
ear decay learning rate for the V∗ token. For augmentations,
we employ a number of color and geometric augmentations
such as grayscale conversion, brightness adjustment, verti-
cal flip, crop, and cutout. All experiments were conducted
with batch size 8 on a single NVIDIA A6000 GPU.

Results
We compare our method with several other methods, both
quantitatively and qualitatively. For quantitative evaluation,
we measure CLIP-I and T scores and conduct a user study
to assess real-world preferences. Additionally, we evaluate
the diversity of generated images to determine whether each
method can produce a variety of outputs, potentially satisfy-
ing user needs. We also conduct an ablation study to confirm
the effectiveness of the three novel techniques used in train-
ing our text encoder. Moreover, we demonstrate our method
in broader application scenarios to showcase its practicality.

Quantitative comparison. We measured various quanti-
tative metrics, and the results are presented in Table 1. Our
method achieves performance comparable to existing ap-
proaches, although Custom Diffusion exhibits higher CLIP-I
scores than the others. We speculate that this may be due
to the high diversity of our generated outputs, which we
evaluate in later sections. Another important aspect is text
fidelity, which we evaluated using the CLIP-T score. As
shown in the table, our method noticeably outperforms ex-
isting approaches, indicating superior text-based editing per-
formances. We also test our method on different versions of
Stable Diffusion (v2.1), where results show similar tendency
(Table 3)

Computational efficiency. We emphasize the practical
advantages of our method, which demands significantly
fewer trainable parameters and GPU memory compared to

other approaches, as detailed in Table 1. Moreover, personal-
ization presents storage challenges, as the fine-tuned model
should be saved for each concept. While Textual Inversion’s
storage efficiency is notable due to its focus on text embed-
ding fine-tuning, its limited performance hinders practical
application, evidenced by scores of the table and qualitative
results in later sections. On the other hand, DreamBooth re-
quires the storage of all U-Net parameters, consuming a sub-
stantial 3.3 GB. Custom Diffusion reduces this to 74 MB, but
our method further optimizes storage by requiring only 5.1
MB — a mere 0.15 % and 6.89 % of DreamBooth and Cus-
tom Diffusion, respectively. This compact size allows our
model to be seamlessly stored in constrained environments
like the cloud or portable storage devices.

User study. In real-world scenarios, users need to select
the output image that both satisfies (1) subject fidelity and
(2) alignment between the text prompt and the generated
image. To evaluate existing methods in this context and un-
derstand user preferences, we conducted a large-scale user
study. Participants were tasked with selecting the best image
from multiple options generated by different methods. We
employed diverse subjects and text prompts sourced from
DreamBench (Ruiz et al. 2023) (templates in Appendix C).
To ensure fairness, random seeds were fixed, and image or-
der was randomized for each question. Through Amazon
Mechanical Turk, 100 participants completed 20 questions
each, yielding a total of 2,000 responses. As indicated in Ta-
ble 2, our method was favored by 52.65% of users, demon-
strating its superior ability to meet user demands for subject
fidelity and text-image alignment in practical settings.

Qualitative results. We evaluated our method’s perfor-
mance across diverse text prompts and subjects, visualiz-
ing the generated images for each method in Figure 3. Our
method effectively modifies object properties, accurately ap-
plying colors to specified subject (e.g., ‘colorful V∗ dog’,
‘red V∗ bowl’), as illustrated in the images of the first row.
It also adeptly generates images across various scenes (e.g.,



Figure 5: Comparison of generated attention maps. We
compare cross-attention maps of Custom Diffusion and our
method. Our approach successfully disentangles subject-
relevant information from irrelevant details.

Aug. KPL WS CLIP-T CLIP-I

✗ ✓ ✓ 0.625 0.703
✓ ✗ ✓ 0.632 0.723
✓ ✓ ✗ 0.623 0.727

✓ ✓ ✓ 0.628 0.728

Table 4: Ablation study. Aug., KPL, and WS denote our
paired data augmentation, knowledge preservation loss, and
weighted sampling, respectively.

‘night sky’, ‘ice in the ocean’, ‘in the city’), as demonstrated
in the left image of the second row and the images in the last
row. Furthermore, our method produces images in diverse
styles (e.g, ‘watercolor painting’ and ‘drawing’). Qualitative
comparisons reveal that TextBoost excels at simultaneously
preserving subject fidelity and adhering to text prompts, out-
performing other methods.

Diversity. To evaluate the degree of overfitting that leads
to reduced diversity in outputs, we measure output diversity
using the inter-similarity between generated images with the
DINOv2 score (Figure 4 (a)). We also examine qualitative
outputs across different subjects and prompts in (b). Com-
pared to other two methods, the results confirm that our ap-
proach produces highly diverse images with varied poses,
effectively incorporating the specified text prompts.

Disentanglement. To verify the effectiveness of our
method in disentangling subject-irrelevant information (e.g.,
background) from subject-relevant features, we analyze the
attention maps of corresponding tokens. As depicted in Fig-
ure 5, the attention maps for the identifier token V∗ reveal
a clear contrast between our method and Custom Diffusion.
While Custom Diffusion’s V∗ token exhibits a strong focus
on irrelevant background information, our method demon-
strates that V∗ accurately attends to subject-relevant fea-
tures.

Ablation study
To verify the effectiveness of the components in our method,
we conducted an ablation study, with the results presented
in Table 4. Additionally, to assess whether the augmentation

Figure 6: Ablation on augmentation token. To test whether
the augmentation token has learned the corresponding aug-
mentation, we generate images with and without the aug-
mentation token as the input prompt. We showcase a vertical
flip as an example of intuitive visualization.

tokens were learned effectively, we performed an ablation
specifically on the augmentation token. In this analysis, we
used a vertical flip to visually and intuitively evaluate its ef-
fectiveness. Examples are provided in Figure 6, where the
dog, prompted with the augmentation token, generates ver-
tically flipped dog images, confirming the token’s intended
effect.

Stylization
To test whether our method is applicable to style person-
alization, we conducted the following experiment. We em-
ployed a single comprehensive caption, following the ap-
proach of Sohn et al. (2023) using Stable Diffusion v2.1. As
illustrated in Figure 7, our method successfully learns the
style from just a single image.

Figure 7: Stylization. We use a single style image (bottom
left) as a reference to generate customized images.

Conclusion
In this paper, we aimed to develop high-quality personal-
ized text-to-image generation method that enables creative
control through text prompts, with a single reference image.
Our TextBoost, which focuses on fine-tuning the text en-
coder with innovative training methods, effectively mitigates
overfitting and delivers superior quality, particularly in text
control. We believe our approach paves the way for tailored
text-to-image generation, making one-shot personalization a
practical reality in various real-world applications.
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A. Data Augmentation
Naive Augmentation

s = σ(log SNR) (6)

When input images are augmented without corresponding
modifications to the text prompt (i.e., naive augmentation),
the resulting images often suffer from augmentation leakage,
as described in Karras et al. (2020) (refer to Figure 8). This
issue notably degrades image alignment scores, as demon-
strated in Table 5. Consequently, it is essential that the text
prompt is modified in tandem with image augmentations to
preserve accurate alignment and maintain the integrity of the
generated results (Figure 9).

Figure 8: Examples of Augmentation leaking.

Figure 9: Comparison on naive augmentation and paired
augmentation.

Prompt augmentation CLIP-T CLIP-I

✓ 0.629 0.702
✗ 0.628 0.728

Table 5: Effect of prompt augmentation.

Relationship with DistAug
Custom Diffusion (Kumari et al. 2023) adopted a similar
augmentation strategy to ours, albeit focusing on relatively
weak transformations like scaling. In contrast, we employed
a broader range of stronger augmentations, such as cutout or

Augmentation Initialization token Num. tokens

horizontal flip flip 1
vertical flip flip 1
scale zoom in / zoom out 2
translate on the left / on the right 3
random crop & resize crop 1
grayscale gray 1
brightness bright / dark 1
cutout hole 1
grid grid of 2

Table 6: Augmentation and initialization tokens.

grid, without augmentation leaking. We argue that our ap-
proach aligns with the princples of Distribution Augmenta-
tion (DistAug) (Jun et al. 2020). DistAug states that train-
ing a generative model on various augmented distributions
(including identity transformation) can prevent overfitting
and enable sampling from the original distribution by condi-
tioning on the identity transformation. Our method aligns
with this principle, as consistent token-augmentation par-
ings would potentially achieve similar results without requir-
ing augmentation inversion. However, we observed potential
coupling between specific tokens and augmentations (e.g.
“right” and horizontal shift), necessitating the introduction
of augmentation tokens.

Implementation detail
We employed eight distinct augmentations during the train-
ing. With a probability of 0.8, we randomly selected one
of these augmentations to apply to the image and prompt.
Otherwise, no augmentation was performed. When an aug-
mentation was applied, we inserted between 1 to 3 augmen-
tation tokens (A∗) before or after the prompt. Each set of
augmentation tokens was initialized with unique words. For
more details on specific augmentations, please refer to Ta-
ble 6. Visualization of the augmentations can be found in
Figure 10.

B. Timestep Sampling
Effect of text embedding per timestep. Previous studies
(Choi et al. 2022; Balaji et al. 2022) have shown that diffu-
sion models are can be formulated as a mixture-f-experts,
with each timestep conditioned U-Net playing a different
role. Notably, Balaji et al. (2022) demonstrated that dif-
fusion models become less reliant on text input as noise
level decreases. Inspired by these findings, we investigated
the influence of text conditioning on diffusion model out-
puts. Specifically, we computed the difference in model out-
puts, ϵ(xt, y), for identical latent inputs, xt, but varying text
prompts, y. For instance, we compared the outputs for the
base prompt “photo of a dog” to alternative prompts like
“photo of a cat”.

Considering the reverse process of the denoising diffusion
probabilistic model (DDPM) (Ho, Jain, and Abbeel 2020),
expressed as:

xt =
1

√
αt

(xt−1 −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz. (7)



Figure 10: Augmentations used during training TextBoost.

Figure 11: Effect of text input. We measured the effect
of the text conditioning by βt|ϵ(xt, ybase) − ϵ(xt, yother)|,
where a base prompt ybase is ‘photo of a dog’.

Here, βt, αt, and ᾱt are predefined time-dependant scaling
factors, we can see that the model output’s impact is scaled
by βt/

√
1− ᾱt. Consequently, we scaled the difference by

βt.
As illustrated in Figure 11, the effect of text input inten-

sifies as the signal-to-noise ratio (SNR) decreases. To em-
phasize this region during training, we biased our timestep
sampling toward lower SNR values.

Implementation detail. In practice, we sampled timestep
t from a categorical distribution. The probability of each
timestep, p(t), was defined as follows:

p(t = ti) =
− log SNR(ti) + C∑T

i=0(− log SNR(ti) + C)
, (8)

where C = max log SNR(ti) is a constant shift ensuring
p(t) is positive. The probability distribution of timesteps is
visualized as a dashed line in Figure 11.

C. User Study Template
We ask users to choose one image from the four outputs gen-
erated by each of Textual Inversion, DreamBooth, Custom
Diffusion, and TextBoost (ours). Users are instructed to se-
lect the image that best (1) resembles the given subject and
(2) adheres to the given prompt simultaneously. Example
questions are shown in Figure 12. Note that output images
are sampled with a fixed random seed across methods for
fair comparison and are presented in shuffled order.

D. More Results
Comparison with Custom Diffusion
Here, we present more qualitative results compared to Cus-
tom Diffusion in Figure 13. Our generated images closely re-
semble the subject matter of the reference image. Moreover,
our method significantly outperforms Custom Diffusion in
capturing the essence of the text prompt.

More qualitative results of our method
Figures 14, 15, and 16 offer additional examples showcas-
ing the diverse subjects our TextBoost can handle across a
wide range of text prompts. TextBoost consistently gener-
ates high-quality outputs, enabling creative control through
imaginative prompts.



Figure 12: User study template. We ask 100 participants to answer 20 questions each on Amazon Mechanical Turk.



Figure 13: Comparison with Custom Diffusion. More qualitative results on comparison with Custom Diffusion. Random
seeds are fixed for fair comparison.



Figure 14: More qualitative results of our TextBoost (dog).



Figure 15: More qualitative results of our TextBoost (cat).



Figure 16: More qualitative results of our TextBoost (several subjects).
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